Wavelet packet denoising of magnetic resonance images: importance of Rician noise at low SNR.

نویسندگان

  • J C Wood
  • K M Johnson
چکیده

Wavelet packet analysis is a mathematical transformation that can be used to post-process images, for example, to remove image noise ("denoising"). At a very low signal-to-noise ratio (SNR <5), standard magnitude magnetic resonance images have skewed Rician noise statistics that degrade denoising performance. Since the quadrature images have approximately Gaussian noise, it was postulated that denoising would produce better contrast and sharper edges if performed before magnitude image formation. Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and edge blurring effects of these two approaches were examined in synthetic, phantom, and human MR images. While magnitude and complex denoising both significantly improved SNR and CNR, complex denoising yielded sharper edges and better low-intensity feature contrast.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Denoising of Rician noise in Magnitude MRI Images using wavelet shrinkage and fusion method

Improving the signal-to-noise-ratio (SNR) of magnetic resonance imaging (MRI) using denoising techniques could enhance their value, provided that signal statistics and image resolution are not compromised. Here, a new denoising method based on wavelet based bayes shrinkage method of the measured noise power from each signal acquisition is presented. Bayes shrink method denoising assumes no prio...

متن کامل

Denoising of complex MRI data by wavelet-domain filtering: application to high-b-value diffusion-weighted imaging.

The Rician distribution of noise in magnitude magnetic resonance (MR) images is particularly problematic in low signal-to-noise ratio (SNR) regions. The Rician noise distribution causes a nonzero minimum signal in the image, which is often referred to as the rectified noise floor. True low signal is likely to be concealed in the noise, and quantification is severely hampered in low-SNR regions....

متن کامل

An Adaptive Hierarchical Method Based on Wavelet and Adaptive Filtering for MRI Denoising

MRI is one of the most powerful techniques to study the internal structure of the body. MRI image quality is affected by various noises. Noises in MRI are usually thermal and mainly due to the motion of charged particles in the coil. Noise in MRI images also cause a limitation in the study of visual images as well as computer analysis of the images. In this paper, first, it is proved that proba...

متن کامل

A wavelet multiscale denoising algorithm for magnetic resonance (MR) images.

Based on the Radon transform, a wavelet multiscale denoising method is proposed for MR images. The approach explicitly accounts for the Rician nature of MR data. Based on noise statistics we apply the Radon transform to the original MR images and use the Gaussian noise model to process the MR sinogram image. A translation invariant wavelet transform is employed to decompose the MR 'sinogram' in...

متن کامل

Adaptive Magnetic Resonance Image Denoising Using Mixture Model and Wavelet Shrinkage

This paper proposes a new adaptive wavelet-based Magnetic Resonance images denoising algorithm. A Rician distribution for background-noise modelling is introduced and a Maximum-Likelihood method for the parameter estimation procedure is used. Further discrimination between edgeand noise-related coefficients is achieved by updating the shrinkage function along consecutive scales and applying spa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Magnetic resonance in medicine

دوره 41 3  شماره 

صفحات  -

تاریخ انتشار 1999